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Building Bayes Networks:

Structure Learning



Evaluation Measures and Search Methods
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A learning algorithm for graphical models consists of an evaluation measure, by
which a candidate model is assessed and a (heuristics) search method, which
determines the candidate models to be inspected.

An exhaustive search over all graphs is too expensive:

◦ 2(
n
2) possible undirected graphs for n attributes.

◦ f(n) =
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i)f(n− i) possible directed acyclic graphs.

8 possible undirected graphs with 3 nodes



Examples for Evaluation Measures and Search Methods
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Evaluation Measures for Relational Networks

Hartley Information Gain
Conditional Hartley Information Gain

Evaluation Measures for Probabilistic Networks

χ2-Measure
Mutual Information / Cross Entropy / Information Gain
(Symmetric/Modified) Gini Index
Bayesian Measures (K2 metric, BDeu metric)
Measures based on the Minimum Description Length Principle
Other measures that are known from Decision Tree Induction

Search Methods

Optimum weight spanning tree construction (extension: K2 Algorithm)
Guided random graph search (simulated annealing, evolutionary algorithms)



Learning the Structure of Graphical Models from Data
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.



Testing for Decomposability: Comparing Relations
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In order to evaluate a graph structure, we need a measure that compares the actual
relation to the relation represented by the graph.

For arbitrary R, E1, and E2 it is

R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.
This relation entails that for any familyM of subsets of U it is always:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

rU


 ∧

Ai∈U
Ai = ai


 ≤ min

M∈M



rM


 ∧

Ai∈M
Ai = ai





.

Therefore: Measure the quality of a familyM as:

∑

a1∈dom(A1)

· · ·
∑

an∈dom(An)


 min
M∈M



rM


 ∧

Ai∈M
Ai = ai





−rU


 ∧

Ai∈U
Ai = ai






Intuitively: Count the number of additional tuples.



Direct Test for Decomposability: Relational

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 393

1.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

large
medium

small

2.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

large
medium

small

3.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

large
medium

small

4.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

❅
❅

large
medium

small

5.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

large
medium

small

6.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

❅
❅

large
medium

small

7.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

❅
❅

large
medium

small

8.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

❅
❅

large
medium

small



Comparing Probability Distributions
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Definition: Let P1 and P2 be two strictly positive probability distributions on the
same set E of events. Then

IKLdiv(P1, P2) =
∑

F∈E
P1(F ) log2

P1(F )

P2(F )

is called the Kullback-Leibler information divergence of P1 and P2.

The Kullback-Leibler information divergence is non-negative.

It is zero if and only if P1 ≡ P2.

Therefore it is plausible that this measure can be used to assess the quality of the
approximation of a given multi-dimensional distribution P1 by the distribution P2
that is represented by a given graph:

The smaller the value of this measure, the better the approximation.



Extensions to Probability Distribution
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Direct Test for Decomposability: Probabilistic
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Numbers below graphs: The Kullback-Leibler information divergence of
the original distribution and its approximation.
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.



Strength of Marginal Dependences: Relational
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Learning a relational network consists in finding those subspace, for which the
intersection of the cylindrical extensions of the projections to these subspaces
approximates best the set of possible world states, i. e. contains as few additional
tuples as possible.

Since computing explicitly the intersection of the cylindrical extensions of the pro-
jections and comparing it to the original relation is too expensive, local evaluation
functions are used, for instance:

subspace color × shape shape × size size × color

possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%

The relational network can be obtained by interpreting the relative numbers as
edge weights and constructing the minimum weight spanning tree.



Strength of Marginal Dependences: Relational
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Definition: Let A be an attribute and R a discrete possibility measure with ∃a ∈
dom(A) : R(A = a) = 1. Then

(Hartley)(A) = log2


∑

a∈dom(A)R(A = a)




is called the Hartley information of A w.r.t. R.

Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 ≈ 3.58
coordinate pair: log2 6 ≈ 2.58



Strength of Marginal Dependences: Relational
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Definition: Let A and B be two attributes and R a discrete possibility measure with
∃a ∈ dom(A) : ∃b ∈ dom(B) : R(A = a,B = b) = 1. Then

I
(Hartley)
gain (A,B) = log2


∑

a∈dom(A)R(A = a)


 + log2


∑

b∈dom(B)R(B = b)




− log2


∑

a∈dom(A)
∑
b∈dom(B)R(A = a,B = b)




= log2

(∑
a∈dom(A)R(A = a)

)
·
(∑

b∈dom(B)R(B = b)
)

∑
a∈dom(A)

∑
b∈dom(B)R(A = a,B = b)

,

is called the Hartley information gain of A and B w.r.t. R.

Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 ≈ 3.58
coordinate pair: log2 6 ≈ 2.58

gain: log2 12− log2 6 = log2 2 = 1



Strength of Marginal Dependences: Simple Example
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Intuitive interpretation of Hartley information gain:
The binary logarithm measures the number of questions to find the obtaining value
with a scheme like a binary search. Thus Hartley information gain measures the
reduction in the number of necessary questions.

Results for the simple example:

I
(Hartley)
gain (color, shape) = 1.00 bit

I
(Hartley)
gain (shape, size) ≈ 0.86 bit

I
(Hartley)
gain (color, size) ≈ 0.58 bit

Applying the Kruskal algorithm yields as a learning result:
✛
✚

✘
✙color

✛
✚

✘
✙shape

✛
✚

✘
✙size

As we know, this graph describes indeed a decomposition of the relation.



Kruskal’s Algorithm
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Kruskal’s algorithm is a greedy algorithm in graph theory, which finds a minimum
spanning tree for a connected weighted graph.

A minimum spanning tree consists of a subset of edges that forms a tree which
includes every vertex, where the total weight of all the edges in the tree is mini-
mized.

Algorithm:
1. Create a graph F, where each vertex in the graph is a separate tree

2. Create a set S containing all the edges in the graph

3. While S is nonempty and F is not yet spanning:

(a) remove an edge with minimum weight from S
(b) if the removed edge connects two different trees then add it to the forest F,

combining two trees into a single tree

At the termination of the algorithm, the forest forms a minimum spanning forest
of the graph. If the graph is connected, the forest has a single component and
forms a minimum spanning tree



Strength of Marginal Dependences: Probabilistic
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Mutual Information / Cross Entropy / Information Gain

Based on Shannon Entropy H = −
n∑

i=1

pi log2 pi (Shannon 1948)

Igain(A,B) = H(A) − H(A | B)

=

︷ ︸︸ ︷

−
∑

a
P (a) log2 P (a) −

︷ ︸︸ ︷
∑

b

P (b)

(
−
∑

a
P (a|b) log2P (a|b)

)

H(A) Entropy of the distribution on attribute A

H(A|B) Expected entropy of the distribution on attribute A
if the value of attribute B becomes known

H(A)−H(A|B) Expected reduction in entropy or information gain



Strength of Marginal Dependences: Probabilistic
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Igain(A,B) = −
∑

a
P (a) log2 P (a)−

∑

b

P (b)

(
−
∑

a
P (a|b) log2 P (a|b)

)

= −
∑

a

∑

b

P (a, b) log2 P (a) +
∑

b

∑

a
P (a|b)P (b) log2 P (a|b)

=
∑

a

∑

b

P (a, b)
(
log2

P (a, b)

P (b)
− log2 P (a)

)

=
∑

a

∑

b

P (a, b) log2
P (a, b)

P (a)P (b)

The information gain equals the Kullback-Leibler information divergence between the
actual distribution P (A,B) and a hypothetical distribution P ∗ in which A and B are
marginal independent:

P ∗(A,B) = P (A) · P (B)

Igain(A,B) = IKLdiv(P, P
∗)



Information Gain: Simple Example

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 405

projection to
subspace

product of
marginals

s m l s m l

small
medium

large

small
medium

large

information
gain

0.429 bit
40 180 20 160
12 6 120 102
168 144 30 18

88 132 68 112
53 79 41 67
79 119 61 101

0.211 bit
20 180 200
40 160 40
180 120 60

96 184 120
58 110 72
86 166 108

0.050 bit
50 115 35 100
82 133 99 146
88 82 36 34

66 99 51 84
101 152 78 129
53 79 41 67



Strength of Marginal Dependences: Simple Example
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Results for the simple example:
Igain(color, shape) = 0.429 bit

Igain(shape, size) = 0.211 bit

Igain(color, size) = 0.050 bit

The Kruskal algorithm is an greedy algorithm which can be used to determine the
minimal spanning tree of an undirected graph.

Applying the Kruskal algorithm yields as a learning result:
✛
✚

✘
✙color

✛
✚

✘
✙shape

✛
✚

✘
✙size

It can be shown that this approach always yields the best possible spanning tree
w.r.t. Kullback-Leibler information divergence (Chow and Liu 1968).

In an extended form this also holds for certain classes of graphs
(for example, tree-augmented naive Bayes classifiers).

For more complex graphs, the best graph need not be found
(there are counterexamples, see below).



Strength of Marginal Dependences: General Algorithms

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 407

Optimum Weight Spanning Tree Construction

◦ Compute an evaluation measure on all possible edges
(two-dimensional subspaces).

◦ Use the Kruskal algorithm to determine an optimum weight spanning tree.

Greedy Parent Selection (for directed graphs)

◦ Define a topological order of the attributes (to restrict the search space).

◦ Compute an evaluation measure on all single attribute hyperedges.

◦ For each preceding attribute (w.r.t. the topological order):
add it as a candidate parent to the hyperedge and
compute the evaluation measure again.

◦ Greedily select a parent according to the evaluation measure.

◦ Repeat the previous two steps until no improvement results from them.



K2 Algorithm
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Idea: Compute the probability of a directed graph BS given the database D
(Bayesian approach by [Cooper and Herskovits 1992])

B̂S = argmax
BS

P (BS | D) = argmax
BS

P (BS, D)

P (D)

= argmax
BS

P (BS, D)

Find an equation for P (BS, D).



K2 Algorithm
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Model Averaging

We first consider P (BS, D) to be the marginalization of P (BS, BP , D)
over all possible parameters BP .

P (BS, D) =
∫

BP
P (BS, BP , D) dBP

=
∫

BP
P (D | BS, BP )P (BS, BP ) dBP

=
∫

BP
P (D | BS, BP ) f(BP | BS)P (BS) dBP

= P (BS)︸ ︷︷ ︸
A priori prob.

∫

BP
P (D | BS, BP )︸ ︷︷ ︸
Likelihood of D

f(BP | BS)︸ ︷︷ ︸
Parameter densities

dBP



K2 Algorithm
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The a priori distribution P (BS) can be used to bias the evaluation measure to-
wards user-specific network structures.

Substitute the likelihood P (D | BS, BP ) for its specific form:

P (BS, D) = P (BS)
∫

BP



n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk




︸ ︷︷ ︸
P (D|BS,BP )

f(BP | BS) dBP

See slide 354 for the derivation of the likelihood term.



K2 Algorithm
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The parameter densities f(BP | BS) describe the probabilities of the parameters
given a network structure.

They are densities of second order (distribution over distributions)

For fixed i and j, a vector (θij1, . . . , θijri) represents a probability distribution,
namely the j-th column of the i-th potential table.

Assuming mutual independence between the potential tables, we arrive
for f(BP | BS) at the following:

f(BP | BS) =
n∏

i=1

qi∏

j=1

f(θij1, . . . , θijri)



K2 Algorithm
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Thus, we can further concretize the equation for P (BS, D):

P (BS, D) = P (BS)
∫
· · ·

∫

θijk



n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk


 ·


n∏

i=1

qi∏

j=1

f(θij1, . . . , θijri)


 dθ111, . . . , dθnqnrn

= P (BS)
n∏

i=1

qi∏

j=1

∫
· · ·

∫

θijk



ri∏

k=1

θ
αijk
ijk


 · f(θij1, . . . , θijri) dθij1, . . . , dθijri



K2 Algorithm

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 413

A last assumption: For fixed i and j the density f(θij1, . . . , θijri) is uniform:

f(θij1, . . . , θijri) = (ri − 1)!

It simplifies P (BS, D) further:

P (BS, D) = P (BS)
n∏

i=1

qi∏

j=1

∫
· · ·

∫

θijk



ri∏

k=1

θ
αijk
ijk


 · (ri − 1)! dθij1, . . . , dθijri

= P (BS)
n∏

i=1

qi∏

j=1

(ri − 1)!
∫
· · ·

∫

θijk

ri∏

k=1

θ
αijk
ijk dθij1, . . . , dθijri

︸ ︷︷ ︸

Dirichlet’s integral =

∏ri
k=1 αijk!

(
∑ri
k=1 αijk + ri − 1)!
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We finally arrive at an expression for P (BS, D):

P (BS, D) = K2(BS | D) = P (BS)
n∏

i=1

qi∏

j=1


 (ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

αijk!




n number of attributes describing the domain under consideration

ri number of values of the i-th attribute Ai, i. e., ri = |dom(Ai)|
qi number of instantiations of the parents of the i-th attribute in ~G,

i. e., qi =
∏
Aj∈parents(Ai) ri =

∏
Aj∈parents(Ai) |dom(Ai)|

αijk number of sample cases in which the i-th attribute has its k-th value

and its parents in ~G have their j-th instantiation

Nij =
ri∑

k=1

αijk
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Global — Refers to the outer product: The total value of the K2 metric is the
product over all K2 values of attribute families.

Local — The likelihood equation assumes that given a parents instantiation, the
probabilities for the respective child attribute values are mutual independent. This
is reflected in the product over all qi different parent attributes’ value combinations
of attribute Ai.

We exploit the global property to write the K2 metric as follows:

K2(BS | D) = P (BS)
n∏

i=1

K2local(Ai | D)

with

K2local(Ai | D) =
qi∏

j=1


 (ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

αijk!



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Prerequisites:

Choose a topological order on the attributes (A1, . . . , An)

Start out with a network that consists of n isolated nodes.

Let ζi be the quality of the i-th attribute given the (tentative) set of parent
attributes M :

ζi(M) = K2local(Ai | D) with parents(Ai) =M



K2 Algorithm
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Execution:

1. Determine for the parentless node Ai the quality measure ζi(∅)

2. Evaluate for every predecessor {A1, . . . , Ai−1} whether inserted as parent of Ai,
the quality measure would increase. Let Y be the node that yields the highest
quality (increase):

Y = argmax
1≤l≤i−1

ζi({Al})

This best quality measure be ζ = ζi({Y }).

3. If ζ is better than ζi(∅), Y is inserted permanently as a
parent node: parents(Ai) = parents(Ai) ∪ {Y }

4. Repeat steps 2 and 3 to increase the parent set until no quality increase can be
achieved or no nodes are left or a predefined maximum number of parent nodes
per node is reached.



K2 Algorithm
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1: for i← 1 . . . n do // Initialization
2: parents(Ai)← ∅
3: end for

4: for i← n, . . . , 1 do // Iteration
5: repeat

6: Select Y ∈ {A1, . . . , Ai−1} \ parents(Ai),
which maximizes ζ = ζi(parents(Ai) ∪ {Y })

7: δ ← ζ − ζi(parents(Ai))
8: if δ > 0 then

9: parents(Ai)← parents(Ai) ∪ {Y }
10: end if

11: until δ ≤ 0 or parents(Ai) = {A1, . . . , Ai−1} or |parents(Ai)| = nmax

12: end for



Demo of K2 Algorithm
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Step 1 – Edgeless
graph

Step 2 – Insert M

temporarily.
Step 3 – Insert KA

temporarily.
Step 4 – Node L

maximizes K2 value
and thus is added
permantently.
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Step 5 – Insert M

temporarily.
Step 6 – KA is
added as second par-
ent node of KV.

Step 7 – M does not
increase the quality
of the network if in-
sertes as third parent
node.

Step 8 – Insert KA

temporarily.



Demo of K2 Algorithm
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Step 9 – Node L be-
comes perent node
of M.

Step 10 – Adding
KA does not in-
crease overall net-
work quaility.

Step 11 – Node L

becomes parent node
of KA.

Result



Strength of Marginal Dependences: Drawbacks
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A

C D

B

pA a1 a2
0.5 0.5

pB b1 b2
0.5 0.5

pC|AB a1b1 a1b2 a2b1 a2b2

c1 0.9 0.3 0.3 0.5
c2 0.1 0.7 0.7 0.5

pD|AB a1b1 a1b2 a2b1 a2b2

d1 0.9 0.3 0.3 0.5
d2 0.1 0.7 0.7 0.5

pAD a1 a2
d1 0.3 0.2
d2 0.2 0.3

pBD b1 b2
d1 0.3 0.2
d2 0.2 0.3

pCD c1 c2
d1 0.31 0.19
d2 0.19 0.31

Greedy parent selection can lead to suboptimal results
if there is more than one path connecting two attributes.

Here: the edge C → D is selected first.
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.
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General Idea: Exploit the theorems that connect conditional independence graphs
and graphs that represent decompositions.

In other words: we want a graph describing a decomposition,
but we search for a conditional independence graph.

This approach has the advantage that a single conditional independence test,
if it fails, can exclude several candidate graphs.

Assumptions:

Faithfulness: The domain under consideration can be accurately described with
a graphical model (more precisely: there exists a perfect map).

Reliability of Tests: The result of all conditional independence tests coincides
with the actual situation in the underlying distribution.

Other assumptions that are specific to individual algorithms.
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large
medium

small

large
medium

small

large
medium

small

large
medium

small
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The Hartley information gain can be used directly to test for (approximate)
marginal independence.

attributes relative number of Hartley information gain
possible value combinations

color, shape 6
3·4 =

1
2 = 50% log2 3 + log2 4− log2 6 = 1

color, size 8
3·4 =

2
3 ≈ 67% log2 3 + log2 4− log2 8 ≈ 0.58

shape, size 5
3·3 =

5
9 ≈ 56% log2 3 + log2 3− log2 5 ≈ 0.85

In order to test for (approximate) conditional independence:

◦ Compute the Hartley information gain for each possible instantiation of the
conditioning attributes.

◦ Aggregate the result over all possible instantiations, for instance, by simply
averaging them.
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large
medium

small

color Hartley information gain

log2 1 + log2 2− log2 2 = 0

log2 2 + log2 3− log2 4 ≈ 0.58
log2 1 + log2 1− log2 1 = 0

log2 2 + log2 2− log2 2 = 1

average: ≈ 0.40

shape Hartley information gain

log2 2 + log2 2− log2 4 = 0

log2 2 + log2 1− log2 2 = 0

log2 2 + log2 2− log2 4 = 0

average: = 0

size Hartley information gain

large log2 2 + log2 1− log2 2 = 0

medium log2 4 + log2 3− log2 6 = 1

small log2 2 + log2 1− log2 2 = 0

average: ≈ 0.33



Conditional Independence Tests: Simple Example

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 428

The Shannon information gain can be used directly to test for (approximate)
marginal independence.

Conditional independence tests may be carried out by summing the information
gain for all instantiations of the conditioning variables:

Igain(A,B | C)

=
∑

c∈dom(C)

P (c)
∑

a∈dom(A)

∑

b∈dom(B)

P (a, b | c) log2
P (a, b | c)

P (a | c) P (b | c),

where P (c) is an abbreviation of P (C = c) etc.

Since Igain(color, size | shape) = 0 indicates the only conditional independence,
we get the following learning result:

✛
✚

✘
✙color

✛
✚

✘
✙shape

✛
✚

✘
✙size
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Algorithm: (conditional independence graph construction)

1. For each pair of attributes A and B, search for a set SAB ⊆ U\{A,B} such that
A⊥⊥B | SAB holds in P̂ , i.e., A and B are independent in P̂ conditioned on SAB.
If there is no such SAB, connect the attributes by an undirected edge.

2. For each pair of non-adjacent variables A and B with a common neighbour C (i.e.,
C is adjacent to A as well as to B), check whether C ∈ SAB.
• If it is, continue.

• If it is not, add arrow heads pointing to C, i.e., A→ C ← B.

3. Recursively direct all undirected edges according to the rules:

• If for two adjacent variables A and B there is a strictly directed path from A to
B not including A→ B, then direct the edge towards B.

• If there are three variables A, B, and C with A and B not adjacent, B−C, and
A→ C, then direct the edge C → B.
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Suppose that the following conditional independence statements hold:

A⊥⊥
P̂
B | ∅ B⊥⊥

P̂
A | ∅

A⊥⊥
P̂
D | C D⊥⊥

P̂
A | C

B⊥⊥
P̂
D | C D⊥⊥

P̂
B | C

All other possible conditional independence statements that can be formed with the
attributes A, B, C, and D (with single attributes on the left) do not hold.

Step 1: Since there is no set rendering A and C, B and C and C and D
independent, the edges A− C, B − C, and C −D are inserted.

Step 2: Since C is a common neighbor of A and B and we have A⊥⊥
P̂
B | ∅,

but A⊥6⊥
P̂
B | C, the first two edges must be directed A→ C ← B.

Step 3: Since A and D are not adjacent, C −D and A→ C, the edge C −D
must be directed C → D.
(Otherwise step 2 would have already fixed the orientation C ← D.)
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The conditional independence graph construction algorithm presupposes that there
is a perfect map. If there is no perfect map, the result may be invalid.

A

B D

C

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
1/47

1/47
1/47

2/47
C = c1 D = d2

1/47
1/47

2/47
4/47

D = d1
1/47

2/47
1/47

4/47
C = c2 D = d2

2/47
4/47

4/47
16/47

Independence tests of high order, i. e., with a large number of conditions,
may be necessary.

There are approaches to mitigate these drawbacks.
(For example, the order is restricted and all tests of higher order are assumed to
fail, if all tests of lower order failed.)
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Drafting: Build a so-called Chow–Liu tree as an initial graphical model.

◦ Evaluate all attribute pairs (candidate edges) with information gain.

◦ Discard edges with evaluation below independence threshold (∼0.1 bits).

◦ Build optimum (maximum) weight spanning tree.

Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of all non-descendants given its parents.

◦ Since the graph is undirected in this step,
the set of adjacent nodes is reduced iteratively and greedily
in order to remove possible children.
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Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.

◦ Remove unnecessary edges.
(two phases/approaches: heuristic test/strict test)

Orienting: Direct the edges of the graphical model.

◦ Identify the v-structures (converging directed edges).
(Markov equivalence: same skeleton and same set of v-structures.)

◦ Traverse all pairs of attributes with common neighbors and check which com-
mon neighbors are in the (maximally) reduced set of conditions.

◦ Direct remaining edges by extending chains and avoiding cycles.
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Drafting: Build a Chow–Liu tree as an initial graphical model

◦ Evaluate all attribute pairs (candidate edges) with specificity gain.

◦ Discard edges with evaluation below independence threshold (∼0.015).
◦ Build optimum (maximum) weight spanning tree.

Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of any non-neighbor given its neighbors.

◦ Since the graphical model to be learned is undirected,
no (iterative) reduction of the condition set is needed
(decisive difference to Cheng–Bell–Liu Algorithm).
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Moralizing: Take care of possible v-structures.

◦ If one assumes a perfect undirected map, this step is unnecessary.
However, v-structures are too common and cannot be represented
without loss in an undirected graphical model.

◦ Possible v-structures can be taken care of by connecting the parents.

◦ Traverse all edges with an evaluation below the independence threshold
that have a common neighbor in the graph.

◦ Add edge if conditional independence given the neighbors does not hold.

Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.
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A fraction of the database of sample cases:
y y f1 v2 f1 v2 f1 v2 f1 v2 v2 v2 v2v2 n y n y 0 6 0 6

y y f1 v2 ** ** f1 v2 ** ** ** ** f1v2 y y n y 7 6 0 7

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 v1 f1 v2 f1 v1 v2 f1 f1v2 y y n y 7 7 0 7

y y f1 f1 ** ** f1 f1 ** ** f1 f1 f1f1 y y n n 6 6 0 0

y y f1 v1 ** ** f1 v1 ** ** v1 v2 v1v2 n y y y 0 5 4 5

y y f1 v2 f1 v1 f1 v2 f1 v1 f1 v1 f1v1 y y y y 7 7 6 7
... ...

21 attributes

500 real world sample cases

A lot of missing values (indicated by **)
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network edges params. train test
indep. 0 59 -19921.2 -20087.2
orig. 22 219 -11391.0 -11506.1

Optimum Weight Spanning Tree Construction

measure edges params. train test
Igain 20.0 285.9 -12122.6 -12339.6

χ2 20.0 282.9 -12122.6 -12336.2

Greedy Parent Selection w.r.t. a Topological Order

measure edges add. miss. params. train test
Igain 35.0 17.1 4.1 1342.2 -11229.3 -11817.6

χ2 35.0 17.3 4.3 1300.8 -11234.9 –11805.2
K2 23.3 1.4 0.1 229.9 -11385.4 -11511.5

L
(rel)
red 22.5 0.6 0.1 219.9 -11389.5 -11508.2
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Danish Jersey Cattle Blood Type Determination

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

21 attributes:
1 – dam correct?
2 – sire correct?
3 – stated dam ph.gr. 1
4 – stated dam ph.gr. 2
5 – stated sire ph.gr. 1
6 – stated sire ph.gr. 2
7 – truedamph.gr. 1
8 – truedamph.gr. 2
9 – true sire ph.gr. 1
10 – true sire ph.gr. 2

11 – offspring ph.gr. 1
12 – offspring ph.gr. 2
13 – offspring genotype
14 – factor 40
15 – factor 41
16 – factor 42
17 – factor 43
18 – lysis40
19 – lysis41
20 – lysis 42
21 – lysis 43

The grey nodes correspond to observable attributes.
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Improving the Product Quality by Detecting Weaknesses

◦ Learn decision trees or inference network
for vehicle properties and failures.

◦ Look for suspicious conditional failure rates.

◦ Find causes of these suspicious rates.

◦ Optimize design of vehicle.

Improve the Error Diagnosis in Service Garages

◦ Learn a decision tree or inference network
for vehicle properties and failures.

◦ Record new faults.

◦ Test for most probable errors.
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Check subnets consisting of an attribute and its parent attributes.

Select subnets with highest deviation from independent distribution.

Vehicle Properties

el. sliding
roof

air con-
ditioning

area
of sale

cruise
control

tire type anti slip
control

paint
fault

battery
fault

brake
fault

Fault Data
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Influence of special equipment on battery faults:

(fictitious) frequency of battery faults
airconditioning
with without

electrical sliding roof
with 8 % 3 %

without 3 % 2 %

◦ Significant deviation from independent distribution.

◦ Hints to possible causes and improvements.

◦ Here: Larger batter may be required, if an air conditioning system
and an electrical sliding roof are built in.


